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Abstract
Unique families of time-harmonic orthonormal beams and localized fields in
an isotropic linear elastic medium are presented. They are obtained using
expansions in transverse plane waves whose intensities and phases are specified
by the spherical harmonics. The families of orthonormal beams can be used
as functional bases for complex elastic fields. As in the case of fields formed
from longitudinal plane waves, the presented localized fields include elastic
storms, whirls and tornadoes. The orthonormal beams and the localized fields
are illustrated by calculating fields, energy densities and energy fluxes.

PACS numbers: 62.30.+d, 43.20.+g, 02.30.Nw

1. Introduction

To compose a field from harmonic plane waves (eigenwaves) in a linear medium, one must
specify propagation directions, frequencies or wavenumbers, polarizations, intensities and
phases of all eigenwaves forming the field. It is advantageous [1–5] to set the intensities and
the phases by a set of orthonormal scalar functions on a two- or three-dimensional manifold.
This approach was originally developed for electromagnetic [1–3] and weak gravitational [3]
fields. In the first paper [4] of this series, we extended it to elastic fields in isotropic and
anisotropic media and sound waves in an ideal liquid. In the second paper [5], we applied it
to fields in an isotropic elastic medium, composed from longitudinal eigenwaves as

W s
j (r, t) = exp(−iωt)

∫ 2π

0
dϕ

∫ θ2

0
exp[ir · k(θ, ϕ)]Y s

j (θ, ϕ)ν(θ, ϕ)W (θ, ϕ) sin θ dθ (1)

where W = W (θ, ϕ) and ν = ν(θ, ϕ) are the amplitude and the beam state functions [4, 5].
Intensities and phases of these eigenwaves are defined by the spherical harmonics Y s

j , and
propagation directions are given by

k̂ = k/k = er = sin θ ′(e1 cos ϕ + e2 sin ϕ) + e3 cos θ ′ (2)
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where er is the radial basis vector of the spherical coordinate system, (ei) are the Cartesian
basis vectors, θ ′ = κ0θ and parameter κ0 satisfies the condition 0 < κ0 � 1. These fields are
formed from plane waves propagating in the solid angle � = 2π(1 − cos κ0θ2).

In this paper, we consider elastic fields formed from transverse eigenwaves propagating
in an isotropic medium. Although they are described by the above equations as well, the
amplitude function W = W (θ, ϕ) is now of a completely different type. A transverse elastic
eigenwave has the two-dimensional amplitude subspace, and its displacement vector u satisfies
the condition u · k̂ = 0. In accordance with the general relations presented in [4], we set two
amplitude functions as follows:

W (θ, ϕ) ≡
(

u

f

)
=

(
eθ ′

ikµL
(− sin θ ′er + cos θ ′eθ ′

) )
(3)

W (θ, ϕ) ≡
(

u

f

)
=

(
eϕ

ikµL cos θ ′eϕ

)
(4)

where

eθ ′ = cos θ ′(e1 cos ϕ + e2 sin ϕ) − e3 sin θ ′ (5)

eϕ = −e1 sin ϕ + e2 cos ϕ (6)

are the spherical basis vectors, f = σe3 is the force density, σ is the stress tensor,
k = 2π/λ = ω/v2 is the wavenumber, v2 = √

µL/� is the phase velocity, µL is the Lamé
module [6] and � is the medium density. This gives two different families of beams (uM-beams
or uA-beams), composed from eigenwaves with the meridional and azimuthal orientation of u,
respectively. In this series of papers, we separately treat elastic beams composed of longitudinal
and transverse eigenwaves, as well as uM and uA-beams. Plane wave superpositions including
different types of elastic wave, e.g., longitudinal and transverse, can be conveniently described
by making use of the exponential evolution operators [7].

The outline of the paper is as follows. Families of elastic orthonormal beams and localized
fields are presented in sections 2 and 3, respectively. The results are summarized in section 4.

2. Orthonormal beams

2.1. Orthonormal beams with θ2 = π/2, κ0 = 1 and � = 2π

Let us first consider the family of orthonormal beams W s
j (1) with θ2 = π/2 and κ0 = 1

(θ ′ = θ ), which are formed from eigenwaves propagating into a solid angle � = 2π . As for
the similar beams formed from longitudinal eigenwaves [5], the orthonormalizing function [4]
ν = ν(θ, ϕ) reduces to a constant upon substitution of both amplitude functions W (3) and
W (4). As a consequence, we obtain the uM-beam,

u = ν2ei(sψ−ωt)u0 (7)

f = ikµLν2ei(sψ−ωt)
{
eI ss−1

j [cos ◦2] + e∗I ss+1
j [cos ◦2] − e3I ss

j [sin ◦2]
}
, (8)

and the uA-beam,

u = iν2ei(sψ−ωt)
(
e∗I ss+1

j [1] − eI ss−1
j [1]

)
(9)

f = kµLν2ei(sψ−ωt)
(
eI ss−1

j [cos] − e∗I ss+1
j [cos]

)
, (10)

where

u0 = eI ss−1
j [cos] + e∗I ss+1

j [cos] − e3I ss
j [sin] (11)
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ν2 = 1

π

√
NQ

�v3
2

e = (eR + ieA)/2 (12)

eR = e1 cos ψ + e2 sin ψ eA = −e1 sin ψ + e2 cos ψ (13)

r = ReR + ze3 R = r sin γ z = r cos γ. (14)

Here, NQ is the normalizing constant [4], R, ψ and z are the cylindrical coordinates of the
point with radius vector r and r , γ and ψ are the spherical coordinates of the same point. The
real and imaginary parts of complex scalar function I sm

j [f ] = I sm
j [f ](r, γ ) can be separated

as [2, 4]

I sm
j [f ] = i|m|(J sm

j0 [f ] + iJ sm
j1 [f ]). (15)

Both functions I sm
j [f ] and J sm

jp [f ] (p = 0, 1) are defined by the spherical harmonic
Y s

j = Y s
j (θ, ϕ), an integer m and a scalar function f = f (θ). For any given f , they are

functions of r and γ . At fixed r and γ , they are functionals regarding f . The definitions and the
properties of these functions are presented in [2,4]. When it cannot cause a misunderstanding,
we omit the arguments (r, γ ).

The deformation γ and stress σ tensor fields of the uM-beam (7) have the form

γ = σ

2µL
= ikν2ei(sψ−ωt)γ0 (16)

where

γ0 = 1
2 ρI ss−2

j [sin ◦2] + 1
2 ρ∗I ss+2

j [sin ◦2] + ρ2I ss−1
j [cos ◦2] + ρ∗

2 I ss+1
j [cos ◦2]

+ 1
2 (ρ1 − ρ3) I ss

j [sin ◦2] (17)

ρ = e ⊗ e ρ1 = e ⊗ e∗ + e∗ ⊗ e = 1
2 (1 − ρ3) (18)

ρ2 = 1
2 (e ⊗ e3 + e3 ⊗ e) ρ3 = e3 ⊗ e3 (19)

and 1 is the unit dyadic.
Using the expressions u (7), γ and σ (16), we also obtain the kinetic wK and the elastic

wE energy densities, the energy flux density vector S (see [4, 6] for the definitions of these
quantities) and the normal component S3 of S as follows:

wK = w0wM w0 = S0/v2 S0 = NQ/λ2 (20)

wM =
1∑

p=0

{
1
2

(
J ss−1

jp [cos]
)2

+ 1
2

(
J ss+1

jp [cos]
)2

+
(
J ss

jp[sin]
)2}

(21)

wE = w0

2

1∑
p=0

{
1

4
(J ss−2

jp [sin ◦2])2 +
1

4
(J ss+2

jp [sin ◦2])2 + (J ss−1
jp [cos ◦2])2

+(J ss+1
jp [cos ◦2])2 +

3

2
(J ss

jp[sin ◦2])2

}
(22)

S = S0S
′ = 4S0�

(
γ0u

∗
0

)
(23)

S ′
N = S3

S0
=

1∑
p=0

{
J ss−1

jp [cos]J ss−1
jp [cos ◦2] + J ss+1

jp [cos]J ss+1
jp [cos ◦2]

+2J ss
jp[sin]J ss

jp[sin ◦2]
}
. (24)

Similarly, for the uA-beam (9), we obtain

γ = σ

2µL
= kν2ei(sψ−ωt)

{
ρI ss−2

j [sin] − ρ∗I ss+2
j [sin] + ρ2I ss−1

j [cos] − ρ∗
2 I ss+1

j [cos]
}

(25)
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wK = w0wA wA = 1
2

1∑
p=0

{(
J ss−1

jp [1]
)2

+
(
J ss+1

jp [1]
)2}

(26)

wE = w0

2

1∑
p=0

{
(J ss−2

jp [sin])2 + (J ss+2
jp [sin])2 + (J ss−1

jp [cos])2 + (J ss+1
jp [cos])2

}
(27)

S = S0(S ′
ReR + S ′

AeA + S ′
Ne3) (28)

where

S ′
R =

1∑
p=0

(−1)p
{
β(1 − s)J ss−2

jp [sin]J ss−1
j1−p[1] + β(s + 1)J ss+2

jp [sin]J ss+1
j1−p[1]

}
(29)

S ′
A =

1∑
p=0

{
β(s + 1)J ss+2

jp [sin]J ss+1
jp [1] − β(1 − s)J ss−2

jp [sin]J ss−1
jp [1]

}
(30)

S ′
N =

1∑
p=0

{
J ss−1

jp [cos]J ss−1
jp [1] + J ss+1

jp [cos]J ss+1
jp [1]

}
(31)

β(s) =
{

−1 (s = −1, −2, . . .)

1 (s = 0, 1, 2, . . .).
(32)

The energy fluxes and the energy densities of uM and uA beams are illustrated in figures 1
and 2. These elastic beams bear some similarities to the electromagnetic beams treated in [1–3].
In particular, the displacement fields for both uM beams (7) and uA beams (9) are described
by the same functions as for the corresponding electric or magnetic field in [2]. As a result,
the kinetic energy densities wK (20), wK (26) and the energy densities we and wm of electric
and magnetic fields are also specified by the same functions wM (21) and wA (26), so figures 1
and 2 in [2] illustrate the properties of both electromagnetic and elastic beams. The uA-beam
bears an even closer resemblance. It is described by the same normal component S ′

N (31) of
the normalized energy flux density vector S′ as the corresponding electromagnetic beam (see
figure 4 in [2]).

The distinction between elastic and electromagnetic beams manifests itself in the second
component (f for elastic beams and E or H vector for electromagnetic beams) of the block
vector W which enters into the orthogonality condition [2, 4]. The coordinate dependence of
f (8) and f (10) differs from the coordinate dependence of E and H . For the transverse and
longitudinal elastic beams, f can be calculated from the corresponding stress tensor f = σe3.

Figure 2 illustrates similarities of and distinctions between the energy distributions of uM-
and uA-beams defined by the same spherical harmonic Y 1

3 . Both beams are highly localized
in all directions, and for them w′ reaches its maximum values in the planes z′ = ±0.7 instead
of the symmetry plane z = 0. However, for the uA-beam these maxima are reached exactly
at the z-axis, whereas for the uM-beams they are reached at distance R′ = 0.3 from this axis.
Besides, the peak of w′ for the uA-beam is twice as large as that of the uM beam.

Of the two types of transverse elastic beam, the azimuthal beams are simpler in structure.
In particular, for the uA-beam defined by the zonal spherical harmonic Y 0

j , from equations (9),
(10) and (25)–(31), we obtain

u = eAν2e−iωt I 01
j [1] f = ieAkµLν2e−iωt I 01

j [cos] (33)

σ = 2µLγ = ikµLν2e−iωt
{(

eA ⊗ e3 + e3 ⊗ eA
)
I 01

j [cos] +
(
eR ⊗ eA + eA ⊗ eR

)
I 02

j [sin]
}
(34)
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Figure 1. Normal component S′
N of the normalized energy flux vector of (a) uM and (b) uA elastic

beams as a function of R′ = R/λ; z = 0; λL/µL = 7/9; θ2 = π/2; κ0 = 1; � = 2π ; j = s = 0
(curve 1; S′

N(0) = 3.29 for uM-beam); j = 1, s = 0 (curve 2; S′
N(0) = 2.468 for uM-beam);

j = s = 1 (curve 3).

wK = w0

1∑
p=0

(
J 01

jp [1]
)2

wE = w0

1∑
p=0

{(
J 01

jp [cos]
)2

+
(
J 02

jp [sin]
)2}

(35)

S ′
R = 2

1∑
p=0

(−1)pJ 02
jp [sin]J 01

j1−p[1] S ′
N = 2

1∑
p=0

J 01
jp [cos]J 01

jp [1]. (36)

The azimuthal component SA of the time-average energy flux density vector S is zero at all
points.
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Figure 2. Normalized energy density w′ = (wK + wE)/w0 of (a) uM and (b) uA elastic beams as
a function of cylindrical coordinates R′ = R/λ and z′ = z/λ; λL/µL = 7/9; θ2 = π/2; κ0 = 1;
� = 2π ; j = 3; s = 1.

2.2. Orthonormal beams with θ2 = π , κ0 � 1/2 and � � 2π

For the fields treated above, the beam manifold B [4] is the northern hemisphere S2
N of the unit

sphere S2, whereas the spherical harmonics (Y s
j ) comprise a complete orthonormal system

on the entire sphere S2. This is why these fields can be grouped into two separate sets of
orthonormal beams, defined by the spherical harmonics Y s

j with even and odd j , respectively.
To obtain a complete system of orthonormal beams [2, 4], defined by the whole set of

spherical harmonics, we set θ2 = π and κ0 � 1/2. In this case, eigenwaves forming the beams
propagate in the solid angle � = 2π(1 − cos κ0π) � 2π , and the beam manifold is the unit
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Figure 3. Normal component S′
N of the normalized energy flux vector of (a) uM and (b) uA

elastic beams as a function of R′ = R/λ; z = 0; λL/µL = 7/9; θ2 = π ; κ0 = 0.3;
� = 2π [1 − cos(0.3π)]; j = s = 0 (curve 1); j = 1, s = 0 (curve 2); j = s = 1 (curve
3).

sphere (B = S2). For both uM- and uA-beams, the orthonormalizing function [4] becomes

ν(θ) = 1

π

√
κ0NQ sin κ0θ

2�v3
2 sin θ

. (37)

Parameter κ0 exerts primary control over the beam divergence and the dimensions of the beam
cross-section at the plane z = 0. The smaller κ0, the more collimated is the beam, but the
cross-section becomes larger (compare figures 1 and 3). Conversely, beams with κ0 = 1/2
and � = 2π have a pronounced core region. When s = 0 and κ0 = 1/2 or κ0 ≈1/2, such
beams have spiral energy fluxes and resemble elastic tornadoes.

3. Localized fields

In the previous paper [5], we presented three unique families of localized elastic fields formed
from longitudinal waves propagating in an isotropic medium: elastic storms, whirls and
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Figure 4. (a) Normal u′
N and (b) azimuthal u′

A components of the normalized instantaneous
displacement field u′ = (� u)/un (un = (2/ω)

√
w0/ρ) of (a) uM and (b) uA elastic storms as

functions of R′ = R/λ and z′ = z/λ; λL/µL = 7/9; θ2 = π ; κ0 = 1; � = 4π ; j = 3; s = 0;
(a) ωt = π/4; (b) t = 0.

tornadoes. In this section, we present similar elastic fields formed from transverse eigenwaves.
They are described by equation (1) with π/2 � θ2 � π and κ0 = 1 (θ ′ = θ ). We assume that
the beam state function ν = ν(θ, ϕ) reduces to a constant.

3.1. Storms and whirls

When θ2 = π , equation (1) describes three-dimensional standing waves composed from
eigenwaves of all possible propagation directions (B = S2 and � = 4π ). There are two
basically different types of such fields—storms (see figure 4) and whirls (see figure 5)—which
are defined by Y s

j with s = 0 and s = 0, respectively.
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Figure 5. Azimuthal component S′
A of the normalized energy flux vector of (a) uM and (b) uA

elastic whirls as a function of R′ = R/λ and z′ = z/λ; λL/µL = 7/9; θ2 = π ; κ0 = 1; � = 4π ;
j = 4; s = 2.

Substitution of W (3) and W (4) into equation (1) with θ2 = π results in two types of
standing wave composed of transverse elastic waves, namely, the uM-wave

u =
√

2ν2ei(sψ−ωt)
{
e i|s−1|+qJ ss−1

jq [cos] + e∗i|s+1|+qJ ss+1
jq [cos] − e3i|s|+pJ ss

jp[sin]
}

(38)

f = i|s|+q+1
√

2kν2µLei(sψ−ωt)
{
e(−1)pβ(−s)J ss−1

jp [cos ◦2] + e∗(−1)pβ(s)J ss+1
jp [cos ◦2]

−e3J ss
jq[sin ◦2]

}
(39)

and the uA-wave

u = i
√

2ν2ei(sψ−ωt)
{
e∗i|s+1|+pJ ss+1

jp [1] − e i|s−1|+pJ ss−1
jp [1]

}
(40)

f =
√

2kν2µLei(sψ−ωt)
{
e i|s−1|+qJ ss−1

jq [cos] − e∗i|s+1|+qJ ss+1
jq [cos]

}
. (41)
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Here, p = 1 − q = 0 if j + |s| is even, and p = 1 − q = 1 if j + |s| is odd.
The stress σ and deformation γ tensor fields are described by

σ = 2µLγ = i|s|+q+1
√

2kν2µLei(sψ−ωt)
{
ρα(s)J ss−2

jq [sin ◦2] + ρ∗α(−s)J ss+2
jq [sin ◦2]

+2ρ2(−1)pβ(−s)J ss−1
jp [cos ◦2] + 2ρ∗

2 (−1)pβ(s)J ss+1
jp [cos ◦2]

+
(
ρ1 − ρ3

)
J ss

jq[sin ◦2]
}

(42)

for the uM-wave, and

σ = 2µLγ = 2
√

2kν2µLei(sψ−ωt)
{
ρi|s−2|+pJ ss−2

jp [sin] − ρ∗i|s+2|+pJ ss+2
jp [sin]

+ρ2i|s−1|+qJ ss−1
jq [cos] − ρ∗

2 i|s+1|+qJ ss+1
jq [cos]

}
(43)

for the uA-wave. Here, α(1) = 1 and α(s) = −1 for s = 1.
The kinetic energy densities for these two waves are given by wK = w0wM and

wK = w0wA with w0 (20) and

wM = (
J ss−1

jq [cos]
)2

+
(
J ss+1

jq [cos]
)2

+ 2
(
J ss

jp[sin]
)2

(44)

wA = (
J ss−1

jp [1]
)2

+
(
J ss+1

jp [1]
)2

. (45)

The elastic energy densities and the energy flux density vector fields of the uM- and uA-
waves are described by

wE

w0
= 1

4

(
J ss−2

jq [sin ◦2]
)2

+
1

4

(
J ss+2

jq [sin ◦2]
)2

+
3

2

(
J ss

jq[sin ◦2]
)2

+
(
J ss−1

jp [cos ◦2]
)2

+
(
J ss+1

jp [cos ◦2]
)2

(46)

S ′
A = β(s)J ss+1

jq [cos]
{
α(s)J ss−2

jq [sin ◦2] − J ss
jq[sin ◦2]

}
+β(−s)J ss−1

jq [cos]
{
J ss

jq[sin ◦2] − α(−s)J ss+2
jq [sin ◦2]

}
+2J ss

jp[sin]
{
β(−s)J ss−1

jp [cos ◦2] − β(s)J ss+1
jp [cos ◦2]

}
(47)

and

wE

w0
= (

J ss−2
jp [sin]

)2
+

(
J ss+2

jp [sin]
)2

+
(
J ss−1

jq [cos]
)2

+
(
J ss+1

jq [cos]
)2

(48)

S ′
A/2 = β(1 + s)J ss+1

jp [1]J ss+2
jp [sin] − β(1 − s)J ss−1

jp [1]J ss−2
jp [sin] (49)

respectively.
For uM- and uA-storms (s = 0), the time-average energy flux vector S is identically

zero at all points. The displacement vector u for uM-storms has the azimuthal component
vanishing everywhere and oscillating normal and radial components. The opposite situation
occurs with uA-storms. Figure 4 depicts the instantaneous displacement fields for the uM-
and the uA-storms defined by the spherical harmonic Y 0

3 . The normal u′
N- and the azimuthal

u′
A-components have maximum intensity of oscillations in the same planes z = ±0.7, but at

R′ = 0 for the uM-storm, and at R′ = 0.3 for the uA-storm.
Both uM- and uA-whirls have only azimuthal time-average energy fluxes (S = S0S ′

AeA,
see figure 5), where S ′

A depends only on R and z. Hence, they have circular energy flux lines.
The spatial distributions of the azimuthal energy fluxes, described by S ′ = S ′(R, z), are quite
different for the uM- and the uA-whirls, even though they are defined by the same spherical
harmonic Y 2

4 .
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3.2. Tornadoes

When s = 0 and π/2 < θ2 < π , the field W s
j (1) is composed from eigenwaves propagating

in the solid angle �, satisfying the condition 2π < � < 4π . It is highly localized and
has spiral energy flux lines similar to those of elastic tornadoes composed from longitudinal
eigenwaves (see figure 5 in [5]). The step of these spirals tends to zero when θ2 tends to π .
The amplitude functions W (3) and W (4) specify two different polarization types (uM and
uA) of such elastic tornadoes formed from transverse waves. The properties of these fields
are intermediate between those of the orthonormal beams (see section 2.1) and whirls (see
section 3.1). For the fields defined by the zonal spherical harmonics (s = 0), energy flux lines
lie in meridional planes.

4. Conclusion

Unique families of time-harmonic orthonormal beams and localized fields in an isotropic linear
elastic medium, defined by the spherical harmonics Y s

j , are presented. Each family consists
of two sets of beams (uM- and uA-beams). They are obtained using expansions in transverse
eigenwaves with the meridional and the azimuthal polarizations. Intensities and phases of
these eigenwaves are specified by Y s

j .
As in the case of fields formed from longitudinal plane waves, there are two different ways

to compose families of orthonormal beams. The first results in two separate sets of orthonormal
beams defined by the spherical harmonics Y s

j with even and odd j , respectively. The second
gives a complete system of orthonormal beams defined by the whole set of spherical harmonics
Y s

j . The presented localized fields include elastic storms, whirls and tornadoes. Since the
elastic fields treated in this paper are formed from transverse plane waves, they bear some
resemblance to electromagnetic orthonormal beams and localized fields discussed in [1–3].
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